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The kinetic equation for particles of the dispersed phase is solved by means of a some- 

what modified Chapman-Enskog method used in the kinetic theory of gases. For 
simplicity only monodisperse systems are considered, in which the effects of direct 

collisions in the process of momentum and energy exchange between particles is 
relatively small. Equations of dynamics defining the motion of such systems in 
mechanics of contiunous media are presented in an approximate form correspond- 

ing to the Euler and the Navier-Stokes approximations used in hydromechanics 
of monophase media. 

We are considering here a monodisperse system of particles suspended in a viscous 
fluid on the assumption that the interaction between particles is primarily due to the 

random velocity and pressure fields in the fluid, while the effect of particle collisions 

is negligible. The kinetic equations for such system can be written as [l] 

Here f = f (t, r, w’) 
city W’ = 

is a unary function of particle distribution with respect to velo- 
w - (w), angle brackets denote averaging over the set, A is the tensor of 

diffusion in the velocity space related ta the mass of a particle. and force H*is defined 
by the following expression (see Appendix 4): 

H* = (H) + aw’ 

(H>=g+x{~,[R,(U)+~(P.UI)+f~~(pl2)(U)]+ 

(O-2) 

+x$ , (5 C%?) * 
(W u=v-w, ug=- 
<U) 
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Here pj (j = 1, 2) are coefficients dependent on the physical properties of both pha- 
ses; KJ and g are certain functions of (p) (see Appendix 4) ; g is the acceleration 

of the external mass field ; v, p and p are local values, respectively, of fluid velocity, 

pressure and volume concentration of the disperse system in the vicinity of a particle 
moving at velocity w ; d,, and d, are the densities of fluid and particle, respectively ; 
the axis z = rl is directed along the line of the mean velocity of the interphase slip 

90. 
The momentum equations which follow from (0.1) define the average motion of the 

dispersed phase as that of a certain continuous medium, and are of the form 

(0.3) 

D <w> 
-E-=- 

‘- + h(p), 
(P> 

h(p) = <H), 0 = <w’*w’> 

Dynamic equations of the average motion of the fluid phase can be written as n] 

D (P) = _ (u} a<p> + (I -(p)) a(v) 
Dt dr 

q = - (p’v’) 

T(l) + &T + h"' 

(v) + $((v)*q) + $[(I - (P>) w*a} (O-4) 

+ $$ <p’ed’) 

h(f) = g - t&((H) - g), s = s (<P>) 

where ed is the deviator of the deformation rate tensor of fluid flowing at velocity v and 

function s defines the deviation of apparent viscosity @] of the fluid filtrating through 
the grid of particles from its molecular viscosity CL,, = d,,vO. By definition (p) and 
(w) can be expressed in terms of function f (t, r, w’) as follows: 

(p)=m=s jdw’, 
s 

(w) =fSwfdw’ (0.5) 

where 0 is the particle volume and n the average count of particle concentration. 
For the complete determinacy of dynamic equations (0.3). (0.4) all magnitudes of 

the form (cp’$‘) defining the properties of pulsating motions (pseudoturbulence) of ‘fhe 

disperse system must be expressed in terms of determinate functions of dynamic variables 
(p), v (p>, (V> and (w: which are the unknowns in these equations. This is the prob- 

lem considzed below. 

1. The “equillbrlum” dlrtrlbution function. Let us first consider the 
equilibrium states of a disperse system in which the dynamic variables are strictly con- 
stant. In this case from the dynamic equations (0.3) and (0.4) follow equalities 

h&P) = 0, - do (* ” <P>) VP + ho(‘) = 0 (1.1) 

and the kinetic equation (0.1) becomes 

a&, (c,w’fo) = (&, * . . (No) ((H), = h,(p) = 0) (1.2) 
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Here and in the following the subscript “zero” denotes magnitudes related to the equi- 

librium state. The expressions for (H;, and enare readily derived from (0.2) by neg- 

lecting in it terms containing’ g and substituting for all averages of the form <cp’+‘> 

their equilibrium values ($$‘)a which can be expressed in terms of dynamic variables 
by entirely independent means, for example by the method described in [l] (see, also, 
Appendix 5). It will be readily seen that in the system of coordinates with the axis 

2 = rl directed along u. tensor’co is diagonal. With the fiit of relationships (1.1) taken 
into account the solution of EQ. (1.2) satisfying the unction of ex~nentia~y rapid 

attenuation when the absolute value of w’tends to infinity is of the form 

fo(w’) ==n ( 
The relationships 

:8nao&p~~~j’* =p !.-;&g) 
0 

AU) = _ 6~)~~) 
I @* = (W’rlrW’)@ 

(l-3) 

(1 A) 

are then,also, satisfied. 
The eigenvalues of tensors A, (to and co in (1.3) and (1.4) are denoted by d(J), eo(fi 

and c,(j) . The relationships (1.4) completely determine the tensor of diffusion in the 

velocity space A appearing in the kinetic equation (0.1). 

2. Thr ryttam of suacertlve l pprox~m~tfono, IRt the actualstate of 
a disperse system be different from that of equilibrium, so that some of the derivatives 

of dynamic variables with respect to coordinates and time are not zero. We assume, as 
in the kinetic theory of gases , that the deviation from equilibrium is small, hence the 

inequalities 
(2:l) 

where, <v) is any dynamic variable, and L and T are measures of local pulsating mo- 

tions (pseudoturbulence) of phases, are satisfied. In this case it is natural to seek the 
solution of Eq. (0.1) compatible with Eqs. (0.3) and (0.4) in the form of series expansion 

in a small parameter &For this each terms of these equations is to be multiplied by em; 
where m in the superscript denotes the order of the dynamic variable derivative appear- 
ing in such terms (it must be taken into consideration that terms ~n~ining zero order 

derivatives of dynamic variables in (0.3) and (0.4) are, also, of order E, as can be seen 

from these equations ; an analogous situation arises in the kinetic theory of gases p]. 
Parameter E has no direct physical meaning ; as in the Chapman-Enskog method it is 
introduced here only for the purpose of tracing the order of various terms in expansions 

of all equations and their solutions. Inclusion of increasingly higher order terms in expan- 
sions in &n results in a higher accuracy of the definition of the true di~q~~b~urn state 

of the disperse system. At the end of calculations one must, obviously, assume E = 1. 
Only local-equilibrium states of the disperse system which can be completely defined 

by dynamic variables at various points and instants of time are considered here. This is 
tantamount to considering the system in the random-phase approximation used, also, in 
the kinetic theory of gases (in the latter this approximation is equivalent to the assump- 
tion of molecular chaos). In this case function f (t, r, w’) depends only implicitly on 
t and r expressed in terms of dynamic variables, i. e. 

Df af D (cp> a (W af -= 
Dt 2 .i)(cp)--BT’ 

;; - 2 

9 
a <cp> ar (2.2) 
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We seek the solution of (0.1) in the form of expansion 

f = fo + ef1 + a2f2 + *a. 
The summations 

e = jFj &me,, e = (who’) 
m=o 

(2.3) 

(2.4) 

correspond to this expansion. Owing to local equilibrium of the states considered here, 
the relations between the various pseudoturbulent averages and the components of tensor 
0 at one and the same point of the disperse system 

(cp’g’: = R [up, $1 .tr 8, (@p’) = R [up, $18, W*U = R P& $1 f~ (2.5) 

are the same for the equilibrium and the nonequilibrium states [l]. Hence tensors R 
introduced in (2.5) can be calculated by these relationships formulated for the equilib- 

rium state from the known characteristics of pseudoturbulence in the equilibrium appro- 

ximation (see Appendix 5). We note that this property of local-equilibrium states had, 

in fact, been already used in Sect. 1 for calculating tensor A appearing in the complete 

kinetic equation (0.1) by virtue of the solution of the “truncated” equation (1.2). valid 
only in the true equilibrium state. 

Relationships (2.3)-(2.5) make possible the derivation of expansions 

($I$,‘> = i Em(#$‘),, (cp’4Qm = R [rp? $1 tr 0, P-6) 

m=o 

(cp’q)‘:, = 5 Em (cp’$i, 7 ~<rp’qom = R [cp, ‘IpIe, 
*=0 

From this and (0.2)-( 0.4) we have 

T(j) = i PTQ m (i= 192) 
??I=0 

h(i’) = i Emh:), h(f) = f$ ,,, Emh(f) 
m=o m=o 

h$” = [g + x (&K, /II,: + P2K, ,‘u,, ‘u>) + ?c $ (E (u)) - + ‘zj 60, + 

--t x {P, id% <P’U’/, + +- ds :p>m 0)) + a, [K, (<(uou’) u’: m + 

+ + u. ,,Iu’” - (uou’)2)mj + d$( :u) LP’U’)m + <P’ (uou’)>, <u>) + 
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(cont. ) 

To obtain a self-consistent scheme for successive approximations it is necessary to 

define functions f, so that, by neglecting all terms of expansion (2.3) of order higher 

than a certain number M and, also. all related terms in expansions (2.4). (2.6). and (2.7), 
the _uth approximation for the distribution function and all dynamic variables is actu- 
ally obtained. The significance of this self-consistency requirement is the same as in 

the case of solution of Boltzmann’s kinetic equation by the Chapman-Enskog method [3]. 
Let us write the convection derivatives of f and of the dynamic variable (VP> in the 

following form : 
Df D (cp>. -= 
Dt 

&d&f, _-&&-sz$ (2.8) 
VT%=0 m=o 

These expansions are to be defined so as to conform with the laws of mass and momen- 
tum conservation defined by Eqs. (0.3) and (0.4). It will be readily seen that this implies 

the following definition of the various terms in (2. 8) : 

D, (P) 1 ag -iii--= -((u>tg +(1 - <foJas Lo+-$- 

Moreover, from the first of Eqs. (0.3) follows 

a (w) O” D, ln (P> 
ar= 2 em div, (w), div, (w) = - Dt (2.10) 

m=o 

The convection derivative of pressure can be determined from the trivial equalities 

Do (P) D (P> D, (P> 
-SF’ 

Dt 
-rO (m>O) 

Dt 

With the use of (2.2) and (2.3) for the convection derivative of f we obtain 

(2.11) 

(2.12) 

From (2.8) and (2.12) we also have 

Dof afo Do <cp> -= 
Dt 

z--, $f = -&.!&D% + _& Dq’) (2.13) 

0 
a (cp> Dt 

GJ 

It is expedient to chose for f, the equilibrium form (1.3). Then 

(2.14) 

where, in accordance with the foregoing, e,(j) are considered to be known functions of 

dynamic variables ~9). 
Introducing parameter a into Eqs. (0.1) and (0.3) and separating in these terms of 

different order with respect to E, for the various coefficients f,,, in expansion (2.3) we 
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obtain 

(2.15) 

+ & hw’ fm-1) + g) 2. ar- 
m-1 8((P) 8,.) Vm-i_m’ _ 

t 

arm-, 

i_+W’ 

*w, , 

m’=o 
dr ) i 

*. ?$*(w) 
j 

Relationships (1.4) were also used in the formulation of (2.15). The expression for the 
tensor olis of the form (see (0.2)) 

ci = II G. ij IL c1, ij = X $ (E iUi>) (2.16) 
i 

Solutions of Eqs. (2.15) must satisfy conditions 

lfmdw’ = 0, lw’f,dw’ = 0, m>O 

The dynamic equations corresponding to the mth approximation are 

(2.17) 

(2.18) 
m'==o 

D <v> m-1 

CE,(I-<~))+=- $+do(l-(p)) ; Ti,?+2p& 2 T$+ 
m’=o rn’=O 

+d,(l--<p>)i hi?‘., $=&+W$. 
m’=o 

parameters 0, appearing here are calculated in the usual manner from the determined 
beforehand magnitudes f m 

0,=+5 (w’*w’) f, dw’ (2.19) 

The various pseudoturbulent averages are expressed in terms of 0, and of dynamic vari- 
ables with the use of relationships (2.51, while Tg’, T$?.), hg’, h’z , and q,, are caleu- 
iated in conformity with their definitions in (2.7). 

It is possible in principle, to determine the dynamic equations (2.18) with any desired 
accuracy by successively solving Eqs. (2.15). It would appear, however, that for the most 
practical applications the analysis can be limited to the first two approximations (n = 
= 1, 2) which, by analogy to hydromechanics of monophase media and the kinetic theo- 
ry, may be appropriately called the Euler and the Navier-Stokes approximations, respect- 
ively. There is here an obvious analogy to gasdynamics, where it is generally sufficient 
in investigations of macroscopic motions of gas to use equations of hydrodynamics in the 
form of Euler or Navier-Stokes approximations, and the need to resort to equations of a 
higher order of approximation (e. g, the Bamett equations) does not arise. 

We would point out the important difference between the method used here and the 
conventional Chapman-Enskog method in the kinetic theory. According to the latter 
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the isotropic magnitude 0 = tr 6 defining the temperature of gas is considered, along 

with the gas density and the mean velocity of its motion, to be an independent parame- 

ter. In the present analysis the mean squares of particle velocity components pulsating 
in various directions are, on the contrary, entirely determinate functions of dynamic 
variables and, in particular, of <p) and <w> . From the physical point of view this differ- 
ence is entirely reasonable. 

In fact,unlike anordinary gas which is a two-parameter system (whose equilibrium state 

is completely defined by only two independent parameters, e. g. density and temperature), 
the suspended particles represent a single-parameter system. This will be readily seen, 
if one considers that the state of a disperse system is entirely defined by specifying a 
single parameter, such as the mean concentration of particles or the mean velocity of 
the interphase slip. 

The situation in which the energy of pulsating motions is independent of properties 
of the flow of the disperse system can, in principle, occur only if some additional sources 
of pseudoturbulent motion of particles were introduced. It seems that in practice this 

kind of situation can only exist in the vicinity of the flow boundaries. Solid boundaries, 

obviously, contribute to the attenuation of pseudoturbulence in their vicinity, indepen- 
dently of the physical properties of particles and of the dispersing medium. Coarse dis- 

perse grids permeable only to the dispersing medium can, on the other hand, induce 
pseudoturbulence by distorting the flow of the dispersing medium and the subsequent 

interaction between the perturbed stream (i. e. the small streams flowing through indi- 

vidual openings in the grid) with particles. An example of a boundary of the second 
kind is provided by the grid admitting the fluidizing medium to the fluidized bed from 
below. 

The foregoing shows that it is not necessary to take into account the transport equa- 
tions for the tensor 8 component, when solving the kinetic equations for suspended par- 

ticles. Such equations are, however, readily derived from (0.1) by conventional methods. 
For example the transport equation for the first invariant of tensor 9 is of the form 

(2.20) 

This equation may be considered as the equation of pseudoturbulent energy transport of 

suspended particles (the mean energy of a single particle pulsation is obviously equal 

to % me, where m is the mass of a particle) ; it is, thus, analogous to the thermal con- 

ductivity equation in the kinetic theory or in hydromechanics of monophase media. 
The various terms in the left-hand side of (2.20) define, respectively, the convective 
variation of 8, the intensification of pseudoturbulence owing to dissipation of energy of 

the dispersed Ijhase mean motion by pseudoturbulent stresses appearing in the second of 

Eqs. (2.18). the normal degeneration of pulsating motions produced by forces of interac- 
tion between the phases, the “Brownian” generation of pulsations by random small scale 
perturbations, and, finally, the transport of 6 by the particle pseudoturbulent pulsations. 
We note that it is not difficult to derive equations for em = tr en, corresponding to Eq. 

(2.20),, in which 8, are determined by (2.19). 
Thus.the here described method differs somewhat from that of Chapman-Enskog in 

which 9. proportional to the gas temperature, is considered to be an independent para- 
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meter, and its equations are used for solving the Boltzmann kinetic equations together 
with those of mass and momentum conservation [3]. 

3. The Euler and Navlrr-Stoke8 rpproxlmrtlona, Let us select as 
the first term of expansion (2.3) the function f. defined by (1.3). The related dynamic 
equations are derived from (2.7) and (2.18) for m#=O, i,,e. after substitution for the actual 

characteristics of pseudoturbulence of the equilibrium values of these. As noted earlier, 
the latter are determined independently (see [l] and Appendix 5 below) and can be con- 
sidered as known functions of the dynamic variables. This makes it pcssible to close the 

system of dynamic equations defining the average motion of the disperse system phases 

in the “zero” approximation considered here. In hydromechanics of disperse systems the 
latter may be appropriately called the Euler approximation. 

In the system of coordinates in which the axis 5 = r, is directed along us, the rela- 

tionship qs = {qo, 0, 0) is entirely satisfied and the tensors (lo and To(l) are diagonal, 

Hence in the Euler approximation only the normal pseudoturbulent stresses in both phases, 

and the component of the fluid phase pulsating stream in the direction of the interphase 

slip mean velocity are actually taken into consideration, The normal pseudoturbulent 

stresses are analogous to pressure in the kinetic theory of gases, while the pulsating stream 

is similar to an additional stream of compressible fluid produced by turbulent pulsations 
of its density and velocity. The transport equation for 6, is of the form (2.20), but the 
flux Q ,js obviously identically zero. 

Let us now consider the following approximation with respect to parameter E, i. e. 
with respect to the deviation of the true state of the disperse system from that of equi- 
librium. We introduce the new unknown function g,: 

fl = fog* 
For m = 1 Eq. (2.15) can be rewritten in the form 

+ 
1 q(p) en) ain ----i~*~))..(~*IW)-c)- 

<p> ar aw’ 

(3.1) 

(3.2) 

Using relationships (1.3) and (2.9)-(2.14) for transforming the right-hand of this equa- 

tion, we obtain the following expressions : 

(3.3) zaccp,e,,c,= __I 

JO(~) dr dw 
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We have introduced here symmetric tensors I” and r” 

r’ = 11 rij’ II* r” = II r”ijII 

(3.4) 

r.“=L I aw 
rf 2 ( L.a(w’>+ _&as)_-__ 

6t) ar, fp arj ’ 6fj 
0 j 

Substituting relationships (3.3) and (3.4) into Eq. 3.2), we obtain 

3 

= ( 

_4cn cv 
$4 

-+&),,= ~1(~4)(+g-_ip’+~)+ 
&uj2 

3 3 

+ 2 ITijWi’ Wj’ + + 2 

i, j=l 

,,,,(+)w~~ (3.5) 

We have here tensor r (see (2.16) and (3.4)) 

We seek the solution of Eq. (3.5) in the form 
3 3 

gl=K+zLj j W ’ + 2 (Jfij + NijWj’) Wi’Wj’ (3.7) 
j=l i, j=l 

where K, LJ, M,j, Nij are certain quantities independent of components w’. Substi- 
tuting (3.7) into Eq. (3.5) and equating terms of the same powers of wi’ in various parts 
of this equation, we obtain for these quantities 

(3.8) 

et 
Lj = Ao’) 6A(j)N, + 2 i 

i=l, i#j 

NjiAti) + -& . i 
z=l. +j 

3 
-1 a he!) 1. Of) a Inet) 

T+-2_4(j)ilr 
1 1 j 
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kt us check whether conditions (2.17) are satisfied. We have 

(3.9) 

Equating expression (3.9) to zero, for x appearing in relationship (3.7) we obtain 

(3.10) 

The quantities appearing in parentheses in (3.8) and (3.10) can be readily expressed in 
the form of determinate functions of dynamic variables. For this it is sufficient to express 

the convection derivatives of 8,(j) by the equalities 

If0 ln et> ahe?? ~f~(p> a In ef) Do 0.4) 
Dt = a<p> Dt -+ - a (U) Dt 

(3.4 2) 

(as shown in [l] and Appendix 5, eati> are independent of (p) ) and, then, make use 

of relationship (2.9) and of the known expressions for the characteristicsofequilibrium 
pseudoturbulence ($*‘>a in terms of dynamic variables. The second of conditions 
(2.17) is identically satisfied. In fact, we have 

Thus the solution (3. I), (3.7) of Eq. (2.15) satisfies for m = 1 both conditions (2.17). 
The components of tensor er are 

wifwfrfldwr = f wipwirglfOdw\‘l = 
s 

= ; (1 + hi&.) Jg ( D”;Dyk’ - C(,k) + ?p_) ($+jij _ 
k=l : 

_ e(i)eG) _i$i) 

(- 
&I -1 

0 0 62) i-T et) ) rii (3.13) 

The dynamic equations for m = 1 are derived from Eqs. (2.18) by substituting into 
these relationships (2.6), (2. ‘7),(3.6), and (3.13). We note the appearance of new terms 
in the dynamic equations in this approximation (which in the hydromechanics of disperse 
systems may be appropriately called the Navier-Stokes approximations) which differ 
from the corresponding equations in the Euler approximation. 

First of all, along with the component (lr of the pulsating stream q there also appear 
transverse components normal to vector u”. Next, the normal pseudoturbulent stresses 
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present in both phases, considered to be continuous media, are somewhat changed and, 
what is particularly important, there appear tangential pseudoturbulent stresses similar 
in their meaning to viscous stresses in a monophase medium or to stresses induced by 
turbulent viscosity. Finally, the forces h@) and hU$appearing in the equations of mo- 

mentum conservation of phases in (2.18). change somewhat. 
The expressions for tangential pseudoturbulent stresses differ substantially from those 

specified in the various phonomenological models of disperse systems. In particular, it 
is generally difficult to separate in the tensors of pseudoturbulent stresses of both phases 
the viscosity and the mean deformation rate tensors ; it will be readily seen that the 

introduction of scalar coefficients of turbulent viscosity is possible only in the case of the 
simplest of flows (e. g. one-dimensional flow), and the values of these depend to a great 

extent on the kind, orientation, etc., of the flow. 

It will be readily seen that in the transport equations derived from (2.4) and (2.20) 

the stream Q = Qt is not zero. The expression defining this stream is easily obtained 

by using (2.19) and (3.1) as input equations. 
Equations (2.18) for m = 0 or m = 1 prove to be considerably more complicated 

than the usual Euler or Navier-Stokes equations. This is primarily due to the presence 
in the former in addition to nonlinear inertial terms of further strong nonlinearities 

owing to the complex dependence of pseudoturbulent stresses and other parameters on 

the intensity of pseudoturbulent pulsations and on dynamic variables and their derivatives. 
Such nonlinearities are, obviously, important only in cases of reasonably strong pseudo- 
turbulence. 

Simple estimates show that the pseudoturbulent terms can be neglected only in inves- 

tigations of highly rarified disperse systems ((p) \< O.Oi-U.i) and, also, of suspensions 
of very small particles (of a radius -lO-4 - IO-” cm) in a sufficiently viscous fluid. In 

all other cases the pseudoturbulent terms appearing in dynamic equations are compara- 
ble to or exceed the ordinary terms. However, as a matter of principle, even when the 

pseudoturbulent terms are small, they must be taken into consideration. 

A complete disregard of the pseudoturbulent terms in dynamic equations would, in 

fact, result in the system of these equations to be, generally speaking, incomplete, thus 

necessitating the formulation of a certain additional relationship defining the equation 
of state of the disperse system and relating its concentration to other dynamic variables, 

if the quantities (p), <P>, <v) and <w> are to be simultaneously determined. A good 
example is provided by the flow of suspension in a circular pipe considered in [4]. This 
complication is entirely naturally avoided by taking into consideration in dynamic 
equations the pseudoturbulent terms, no matter how small these are. 

In solving specific problems it is necessary to take into account that the boundary 

conditions imposed on the solutions of Eqs. (2.18) differ considerably in the general case 
from those imposed on solutions of equations of hydrodynamics of monophase media. 

A detailed discussion of the form of boundary conditions is obviously outside the scope 
of this paper; only the boundary conditions which are to be specified at the solid walls 
bounding the flow are considered here. The normal velocity components <v) and <w> 
must obviously vanish at the solid boundaries. This statement does not, however, hold 
for the tangential components of <v> and (w). Solid particles are, in fact, capable of 
slip in the boundary neighborhood and of entraining adjacent volumes of fluid, which 
results in that the mean velocities of motion are not zero. 
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The no-slip condition of the thin interlayer of fluid separating the flow boundary from 
the disperse system is obviously satisfied but is not entirely mandatory for the fluid phase 

of such system at the interlayer boundary. This interlayer was introduced into the ana- 
lysis in 141, where the conditions of phase velocities and stresses at its boundary with the 

disperse system were, also, considered. 
An example of a problem involving a different kind of boundary conditions is provided 

by the problem of suspended material dis~ibution and internal circulation of phases in 

a liquidized bed. The is bounded from below by a grid permeable only to the dispersing 

medium whose stream Q is normal to the grid. The first pair of boundary conditions is 
evidently of the form 

<UJ = Q/l - CfJ)t (zC,l> = 0, XIL = 0 (Xi4) 

It seems expedient to take as the second pair of boundary conditions those which define 
the pulsations of fluid penetrating through the grid, i.e. 

<v,‘~> = (R[v, w]B),,, = SQ', {zJ~'~> = (R fv,w] E$, = 0, .z,~ = 0 (3.15J 

where 6 is a certain coefficient dependent on the grid structure and the perturbations 
induced by it in the fluid flow. The quantities R and 6 appearing in (3.15) in terms of 
dynamic variables and their derivatives obtained from relationships considered in the 

foregoing, 
Examination of Eqs. (2.18) shows that it is possible to derive the expressions for sub- 

sequent terms of expansion (2.3). Each of these terms can be presented as the sum of 

the particular solution of the related nonhomogeneous equation (2.15) and of the general 

solution of the homogeneous equation, i. e. 

(3.i6) 

The first of the conditions (2.17) can, obviously, be always satisfied by a suitable sehc- 
tion of the constant .K,,, appearing in (3.16). However, the second of conditions (2.17) 

may not necessarily be identically satisfied from a certain number m = M onwards . 

This has a profound physical meaning. 
In fact, as shown in [5], there are generally no conditions whose fulfilment would make 

possible the simultaneous use of the set of equations of motion of particles and the sta- 
tistical concept of “diffusion in the velocity field” used in the formulation of the kinetic 
equation for a system of particles. Hence it can be a priori expected that a unique cor- 

resondence between the definitions of suspended particles by kinetic equations and by 
momentum equations of the kind of (0.3) would be only within the accuracy of a certain 
approximation dependent on the deviation of the actual state of a disperse system from 

that of its equilibrium. The number .tl determines the properties of this approximation. 
We note that the choice of the first term of expansion (2.3) in the form (1.3) is not 

unique. The sum of function (1.3) and certain other functions of an order &I can, also, 

be used for defining functionfo . In particular, function. f, can be written in the form 

(3.17) 

where 6 is considered to be an independent dynamic variable, simiIarly to the tempe- 
rature in the kinetic theory of gas, It will be readily seen that, if Eq. (2.20) is used in 
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conjunction with Eqs. (0.3) and (0.4), the introduction of 6 .does not, in principle, com- 
plicate the solution of the kinetic equation (0.1). Although a system of successive hydro- 
mechanical approximations can be obtained by this method (it was used in [l] for deriv- 
ing the Euler approximation), the latter is somewhat artificial, since, as shown in the 

foregoing, the pseudoturbulent energy of suspended particles, unlike the temperature of 

gas, cannot be considered as an independent parameter. 

Kinetic equations can be similarly solved in the case in which the disperse system 
cannot be considered to be collision-free, however calculations become much more 

complicated. Consideration of collisions between particles is essential only in systems 
whose concentration does hardly differ from the close-packed state. The effect of col- 
lisions can be allowed for in the first approximation by introducing in the kinetic equa- 

tion the usual Boltzmann term. An example of such equation was considered in [S]. 
The results presented here can be easily extended to polydisperse systems with discrete 

or continuous particle distribution with respect to their dimensions or density. The me- 

thod developed in [l], according to which each component of the dispersed phase is con- 
sidered as an independent phase, can be used for this purpose. 

4. Appendix. Detetminrtion of the total force acting on A 
particle. The expression used above for the force acting on an individual particle 

differs somewhat from that used earlier (see, e. g. [l. 61). In deriving this expression for 
the force F we proceed from the definition of the force acting on a single Stokes parti- 
cle in an unbounded viscous fluid which can be written as 

F=mg+Fl+Fa+Fs+Fh, 8P Fl=---o,, 

Fa = d&u, Fa = fd‘a 2, 
Qvo 

u=v-w, -- P - za2 (4.1) 

Fo = doay 
du s I dt’ 

dt 1=1’ 
-co 

I/g ’ 

Here a is the particle radius, and the differentiation with respect to time is carried out 

along the particle trajectory. The velocity and pressure gradients in the fluid undisturbed 
by the presence of particles are denoted by v andVp, respectively. It is further assumed 
that the scale of variation of v and p considerably exceeds a. 

The extension of expression (3.1) to cases in which, fiist, the Reynolds number which 
defines the flow around particles cannot be considered small and, second, when the fluid 

contains a great number of suspended particles, thus reducing the distance between these 

to dimensions comparable to their radius, makes it necessary to solve the problem of 
fluid flow through a grid of pulsating particles. Since so far, such solution has not been 

found, we shall limit our analysis to the phenomenological aspects of this problem. 

It is, first of all, obvious that, independently of the presence of other particles in the 
(single-particle) system, the force mg excercised by the external field does not vary, 
while force F, produced by the undisturbed pressure field in the fluid is, as before, expres- 

FL (1. r) = p(r'-r)dS=--3, 
4 

5= 3 xa3 

where integration is carried out over the particle surface. Thus theexpression for) force 

F1 remains of the same form even in the presence of other particles in the stream. 
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We define the stationary force of resistance to the motion of the single particle exerted 
by the fluid at high Reynolds numbers and nonzero Co>, by the expression experiment- 
ally derived in hydraulics for a fluid flowing through a layer of immobilized particles. 
A survey of experimental data on F1 is given in p]. For the sake of definiteness we use 

here the ErRan relationship 
F 2 = d@ IfirKl (p) + &K, (p) u] u, fil = 9v&a”, & = 0.165/n (4.i1) 

Here & and & are coefficients dependent only on physical parameters of phases, such 

that (4.3) directly yields the expressions for the force under conditions of laminar or 
turbulent flow past the particle, when K1 = 1 and K2 = 0 or K1 = 0 and K2 = I , 

respectively, Only the first term in (4.3) which defines resistance in the form given by 
Stokes remains in (4.3) when R = 2au/v, 4 1 , while for Rs 1 only the second term 

defining the quadratic law of resistance is present, Functions Kr (PI and ffs (0) define the 
effect of constricted flow past an individual particle, resulting from the presence of 

neighboring particles. These functions must obviously become equal to unity when 
p - 0. There are, also, empirical definitions of K1 (p) and Kz (pi fl]. Force Fa related 
to the effect of acceleration of the apparent mass of fluid on the relative motion of a 

particle may, by analogy to (4.1). be represented in one of the following two forms: 
dU 

Fs = do04 (P) dt or Fa = &G-& (6 (P) u) (4.4) 

where 5 (p) - the substitute for the factor l/2 in (4.1) - is a certain function of local 
concentration in the disperse system. Unfortunately any experimental or theoretical 

data on t in a concentrated disperse system are not available. 
To estimate approximately the factor E (p) we shall consider the flow of a perfect 

fluid past a single particle of the grid, using the cellular model of constricted flow (see, 

e. g. @I). Let us examine the relative motion of a particle at velocity u* in a direction 
opposite to that of the ‘x-axis. We use a system of spherical coordinates with its origin 

attached to the particle center at the considered instant of time, and establish the bound- 

ary conditions for the flow potential cp as 

The solution of the Laplace equation for cp with conditions (4.5) is of the form 

cos 6 = - (ru*) / (ru,) (4.6) 

The expression for the kinetic energy of the perturbed fluid flow inside a cell is written 

In the system of coordinates attached to a moving particle the fluid velocfty I’s, obvi- 
ously, equal to ti* f VT. The mean velocity of fluid fn the cell can then be expresseri 
in the iorn? 1 

u =- x 5 -2 \ i 
@ 

P a<;<** 
%‘Xj I dr -_ u* [I + e (1 f & III pj1 = u 

UyCU_4, (2, y. 2) = {r1, tz. r3J. SG = s ‘p (@a 
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Expression (4.8) makes it possible to represent the value of (4.7; as a fuXtiOn of ZJ. 
The total momentuni of the perturbed flow can be readilv derived from (4.7). As the 
result, after conventional calculations, we obtain for force F, the second relationships 
(4.4) in which 1 

S(p)=-“y 

With P increasing from zero $, (p) first decreases from I,+, reaches its minimum and, 

then, begins to increase (reaching r,$ for p -) 1) 
A phenomenologically reasonable generalization of the formula for F. in (4.1) can 

be written in the form t 

Fa = &ST c 11(P)++ I;=[’ f&/ (4.10) 
tit, 

where 11 (p) is a certain function of the order of unity, and t, is a characteristic time 
interval during which variation of local fluid velocity in the free volume around the par- 

ticle are still affecting the force exerted on this particle. The value of t, can be con- 

sidered to be the tfme of propagation of perturbation induced by the particle in the fluid 

flow between the particle and the cell surfaces. Since the basic concept of the lattice- 
like model is that perturbations outside the lattice do not affect the processes taking 
place inside it, this estimate of t, is entirely justified. The rate of wave propagation 
from an oscillating body in a viscous fluid is of the order of {~~~)*‘a, where o is the fre- 

quency of oscillation. In the case considered here o is to be taken as the frequency of 
variation of U. Hence a’--a i-p ‘13 a -_-- 

to - (voo)‘/P - pYs (voo)% 
(4.11) 

As expected, the time t, - CO , when p - 0 in accordance with the expression (4.1) 

for an isolated particle. The interactions in a reasonably concentrated disperse system 

are of fundamental interest. We limit our considerations to systems for which 
(1 - p)“‘J@‘” CI i-10. 

Let us consider two limit cases. In the first of these 

which on the assumption that u H ao becomes equivalent to inequality Ii $1 which 

defines the inertia-free mode of ffow past the particle. In this case, allowing for rela- 

tionships (4.1) and (4. ll), we obtain for the force (4.10) the estimate 

hence this force can be neglected as small in comparison with the force of viscous inter- 

action berween particle and fluid. In the second case the inequality (4.12) is reversed 

so that in (4.10) we can assume t, CN 00. Substituting u cos ot for u and assuming 

u z const, instead of (4.13) we obtain the estimate 
v&J ‘IL 

Fa -dozy 1/z u - do3 ,q- 
i J 

u < domu - Fs (4.14) 

i.e. force FB can, again, be neglected as small in comparison with F,. Estimates (4.13) 

and (4.14) that within a certain approximation force F, may be altogether excluded 
from the analysis. This exclusion is important, since taking this force into account 
would have meant a revision of the majority of relationships derived in the foregoing. 
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The kinetic equation (0.1) derived from the Kolmogorov-Chapman equation is, in 
fact, valid only on the assumption that the random variation of variables, which defines 
the local state of a disperse system. is a Markovian process, while. on the other hand, the 

dependence of force F on the history of particle motion is incompatible with that pro- 

cess. Although the F, component of force F was taken into consideration in a number 

of papers (e. g. Cl]), the limitations imposed by this on the admissibility of using the 
kinetic equation in the form (0.1) were ignored. 

Relating force F to a unit of particle mass m, we obtain the equation for force H. 

Averaging the latter, we find the expression for <H) appearing in (0.2) which is correct 
to terms of second order with respect to pseudoturbulent variables. Subtracting (H) from 
H, we obtain the expression for the pulsating force H’ 

The expression for force H’ contains terms proportional to various pseudoturbulent vari- 
ables. Separating in expression (4.15) terms proportional to components w’, we obtain 
for tensor c the relationship (0.2). The effect of remaining components of force H’ on 

the random behavior of the dispersed phase particles is allowed for in conformity with 

the basic assumption used in the formulation of Eq, (0.1) by the introduction in it of the 

term which defines diffusion in a velocity space. 

6. Appendix. The determination of properties of pseudoturbu-, 
lence in the equilibrium approximation. The random pseudoturbulent 

variables satisfy the stochastic equations derived from the equation of motion of particles 
and fluid in the gap between particles [l]. The Langevin equation for a single particle 

is of the form 
dw’/dt = Ho’ (5.1) 

(the expression for Fld,valid for the equilibrium state, is derived from (4.15) by neglect- 
ing terms proportional to derivatives of dynamic variables). 

The stochastic equations for the fluid are obtained by subtracting from the Navier- 
Stokes equation the related averaged equations Cl]. For the equi~brium state this yields 

i++ tu,+‘-((I-_(p&&n (5.2) 

( -$+ &+- I 
2yos %’ 

z+-y- 
(0) 

do (1 - <p>) dr % (1 - ([J,f H’ 

Changes of parameters p’ , v’ and w’can be estimated from Eqs. (5.1) and (5.2) for a 
given random function p’ (t, r) which defines fluctuations of local concentration in the 
disperse system, i. e. it becomes possible to express the statistical properties of these 
parameters in terms of related characteristics of p’. The simplest tiay of achieving this 
is to use the correlation theory of stationary random processes. which implies presenting 
p’, P’, v’ and w’ in the form of Fourier-Stieltjes integrals and examine the spectral 

measures appearing in these. From (5.2) we derive for the spectral measures the follow- 

ing system of equations : iodz 
W 

= dZ 
N’ (0 + <u> k) dZ, - (i- (P)) l&6, = 0 (5.3) 

(o - (u) k) dZ, = - tk vos 
dl(1 - <p>) 

.dZp - - 
I- <P) 

kadZ, + -+ li (Mz,) 1 (P) 
-x(1 - <o>PZH / , 
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From (4.15) for dZ, we have 

‘&-I= x 1 @Kl+ FM2 0~)) dZ, + PaKs (I&Z,) cu> + 

(5.4) 

These equations make it possible to express all spectral measures and, also, all spectral 

densities in terms of spectralmeasure dZ, and of spectral density Iyp p (0, k) of the 
random process P’. The space-time correlation functions of the vario4 pseudoturbulent 
processes are derived from the related spectral densities by integrating the latter with 

respect to frequencies and the pulsation wave vector k . Integration is carried out in the 
conventional manner, and the necessary definition of Y,,, (w, k) can, for example., be 

taken from [8]. As the result, we obtain in the equilibrium approximation all character- 

istics of pseudoturbulence, which appear in dynamic equations considered above, expressed 
in the form of explicit functions of dynanic variables. 
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